Геонейтрино — это нейтрино и антинейтрино, которые рождаются в результате радиоактивного распада элементов в недрах нашей планеты. Большинство из них — это электронные антинейтрино, возникающие при распаде долгоживущих изотопов урана-238, тория-232 и калия-40.
Сами по себе нейтрино — это фундаментальные частицы, настоящие "призраки" Вселенной. Они не имеют электрического заряда, их масса почти нулевая, и они пронизывают все вокруг триллионами каждую секунду, ПРАКТИЧЕСКИ ни с чем не сталкиваясь.
Создаваемые по всему миру нейтринные детекторы позволяют "ловить" эти частицы. Поскольку геонейтрино беспрепятственно проходят через толщу Земли, они являются уникальным прямым источником информации о процессах, протекающих в ее глубинах, куда невозможно проникнуть физически. Их изучение помогает определить, какая доля внутреннего тепла Земли (а его выделяется около 47 Тераватт) генерируется радиоактивным распадом, а также оценить количество и распределение соответствующих элементов. Эти данные критически важны для понимания геодинамики и тепловой эволюции нашей планеты.
Эти "призрачные" частицы служат проводниками в недоступные иным способом места. Помимо геонейтрино, существуют, например, солнечные нейтрино, которые позволяют заглянуть прямо в ядро нашего Солнца и изучать протекающие там термоядерные реакции.
Его чувствительность настолько высока, что всего за 59 дней работы он провел измерения ключевых параметров нейтрино с точностью, на достижение которой в рамках предыдущих экспериментов потребовалось почти полвека!
Всего 20 лет назад идея, что где-то во Вселенной существуют алмазы диаметром в тысячи километров, воспринималась научным сообществом как фантастика. Но сегодня это доказанный факт: некоторые белые карлики действительно способны превращать свои "внутренности" в гигантские кристаллы углерода — самые большие "бриллианты" во Вселенной.
Белый карлик — это то, во что в конце жизненного цикла превращается звезда небольшой или средней массы, когда запасы ее "топлива" для продолжения термоядерных реакций заканчиваются. Светило сбрасывает оболочки, и на его месте остается сверхплотное ядро размером с Землю, но с массой до 1,44 солнечных.
Этот звездный "огарок" постепенно остывает, и через миллиарды лет начинается самое интересное.
Под чудовищным давлением в миллиарды атмосфер углерод в ядре начинает кристаллизоваться. Атомы выстраиваются в идеальную кубическую решетку, почти идентичную алмазной. В итоге внутри белого карлика вырастает единый кристалл колоссальной массы.
Первый объект такого рода был найден в 2004 году.
Белый карлик BPM 37093 в созвездии Центавра, удаленный примерно на 50 световых лет от Земли, получил неофициальное прозвище "Люси" — в честь песни The Beatles "Lucy in the Sky with Diamonds". С помощью астросейсмологии (анализ пульсаций звезд для изучения их внутренней структуры), команда ученых из Гарвард-Смитсоновского центра астрофизики выяснила, что около 90% массы Люси уже закристаллизовалось. Диаметр алмазного ядра — около 9 000 километров, а его масса — примерно 10³¹ кг (в 1,1 раза больше массы Солнца).
Примечательно, что в процессе перестройки углерода высвобождается скрытая теплота фазового перехода. Это отсрочивает охлаждение белого карлика на 2-4 миллиарда лет. Выходит, что кристаллизация — это еще и природный "обогреватель", который продлевает жизнь угасающей звезды.
С тех пор было обнаружено нескольких десятков кандидатов с кристаллизованными ядрами. Данные, полученные с помощью космического телескопа ESA Gaia и наземной обсерватории Gemini показывают, что примерно каждый десятый белый карлик в определенном диапазоне масс и возраста проходит стадию "алмазного сердца".
Прямо сейчас во Вселенной вращается бесчисленное множество гигантских "алмазов", которые будут сиять еще миллиарды лет после того, как погибнет Солнечная система.
Представьте мир, где нет ни восходов, ни закатов. Мир, у которого нет своей звезды, и поэтому он вынужден одиноко дрейфовать в ледяной межзвездной пустоте.
Именно таким миром является экзопланета PSO J318.5-22 — космический изгнанник, мчащийся сквозь Млечный Путь. Его открытие состоялось в 2013 году.
Планета без дома
PSO J318.5-22 находится на расстоянии около 80 световых лет от Земли — по космическим меркам это почти по соседству. Масса экзопланеты превосходит массу Юпитера в 8,3 ± 0,5 раза, а ее диаметр в 1,46 раза больше аналогичного параметра крупнейшей планеты Солнечной системы.
Когда-то этот объект был частью обычной планетной системы, но гравитационные возмущения, связанные с более массивной планетой или звездой-компаньоном, вышвырнули ее в межзвездное пространство. Теперь юная PSO J318.5-22, возраст которой составляет "всего" 23 миллиона лет (из которых 12 миллионов лет она провела в изгнании), мчится сквозь Галактику со скоростью 25 километров в секунду, не имея шансов вернуться домой.
Горячая планета в холодной пустоте
Несмотря на то, что PSO J318.5-22 лишена тепла родительской звезды, ее поверхность раскалена до 830 градусов Цельсия — температуры, достаточной, чтобы расплавить алюминий. Откуда же берется это тепло?
Источников тепла у этого мира два. Первый — остаточная энергия гравитационного сжатия, доставшаяся в наследство от процесса формирования. Второй — непрерывный распад радиоактивных элементов в недрах. PSO J318.5-22 — словно тлеющий уголек в ледяной пустоте космоса, который медленно, но неотвратимо остывает.
Обнаружить планету без звезды — крайне сложная задача. Астрономы засекли PSO J318.5-22 благодаря ее инфракрасному свечению: она буквально светится от внутреннего тепла, излучая в диапазоне, невидимом для человеческих глаз.
Современные наблюдения дают понять, что планеты-изгои — весьма распространенные объекты во Вселенной. То есть их существование — не исключение из правил, а обычное явление, связанное с динамикой планетных систем. Моделирование показывает, что только в Млечном Пути могут быть миллиарды подобных бродяг — гигантская скрытая популяция миров, изгнанных из родных систем и обреченных на вечное одиночество в межзвездной пустоте.
В 2020 году австралийский радиотелескоп ASKAP зафиксировал странный сигнал ASKAP J173608.2-321635, источник которого скрывался в направлении центра Млечного Пути. Сначала казалось, что это рядовое явление, так как космос полон радиоисточников: пульсары, квазары, остатки сверхновых.
Однако чем больше данных накапливалось, тем очевиднее становилось, что "нечто", породившее сигнал ASKAP J173608.2-321635, не похоже ни на что известное науке.
Космический хаос
Космические источники излучения обычно предсказуемы. У каждого типа объектов есть свой "почерк". Например:
Пульсары вращаются вокруг своей оси с точностью атомных часов — от одного оборота за несколько секунд до нескольких сотен оборотов в секунду.
Звезды в двойных системах регулярно затмевают друг друга, создавая периодические провалы в яркости. Цикл повторяется раз за разом.
Пульсирующие переменные звезды меняют светимость из-за поочередного расширения и сжатия внешних слоев и изменения их температуры. Этот процесс подчиняется законам звездной физики и полностью предсказуем.
Даже квазары, питаемые сверхмассивными черными дырами и демонстрирующие на первый взгляд хаотичное поведение, подчиняются статистическим закономерностям.
ASKAP J173608.2-321635 игнорирует все правила.
Объект может молчать три недели, а потом внезапно вспыхнуть на пять дней. Затем полугодавая тишина, которая сменится вспышкой, длящейся всего несколько часов. И вновь тишина. За пять лет наблюдений астрономы зарегистрировали десятки активных фаз — ни одна не повторила предыдущую ни по длительности, ни по мощности.
Это не просто нерегулярность. Это полное отсутствие какой-либо систематичности.
Примечательно, что между периодами активности объект не тускнеет постепенно. Он "выключается" мгновенно и полностью.
Представьте радиоисточник как лампочку. Обычные переменные объекты ведут себя как лампы с диммером — плавно становятся ярче или тусклее. А вот ASKAP J173608.2-321635 работает как обычная лампа накаливания: щелк — горит, щелк — не горит. Никаких промежуточных состояний.
Такое поведение противоречит физике большинства известных астрономических процессов, которые имеют инерцию и не могут "выключаться" мгновенно.
Призрак в радиодиапазоне
Одна из самых загадочных особенностей объекта — его избирательность по длинам волн. ASKAP J173608.2-321635 излучает исключительно в узком радиодиапазоне около 1 гигагерца. Астрономы, в попытках понять природу аномалии, наводили на эту область:
Рентгеновские телескопы — ничего;
Инфракрасные обсерватории — пусто;
Оптические телескопы — тишина;
Ультрафиолетовые детекторы — ноль.
Объект буквально неуловим во всех диапазонах, кроме радио.
Следовательно, это исключает практически все кандидатов:
Пульсары светятся постоянно во всем спектре — от радио до гамма-лучей. Они не могут "спрятаться".
Магнетары (сверхнамагниченные нейтронные звезды) производят мощнейшие рентгеновские вспышки, которые невозможно не заметить.
Переменные звезды видны в оптическом (видимом) диапазоне по определению — это же звезды.
Черные дыры и нейтронные звезды с аккреционными дисками разогревают падающее вещество до миллионов градусов. Такой объект сияет в рентгене ярче прожектора.
Что может излучать только в радио и быть абсолютно невидимым во всех остальных диапазонах? Астрономы не знают.
Первое предположение — необычный пульсар с нестабильным вращением. Возможно, его магнитное поле устроено так, что луч излучения "мигает" непредсказуемо.
Проблема: пульсары не "выключаются" полностью. Их сигнал может ослабевать, но полностью исчезать на недели, а то и месяцы — это за гранью известной физики нейтронных звезд.
Версия 2: магнетар в спящем режиме
Магнетары периодически "просыпаются", производя всплески активности в виде радиоволн. Может быть, перед нами такой случай?
Проблема: магнетары обязательно излучают в рентгеновском и гамма-диапазонах. Даже в спокойной фазе их рентгеновское свечение регистрируется. Здесь его нет вообще.
Версия 3: двойная система с затмениями
Возможно, это пара объектов, где один периодически заслоняет излучение другого?
Проблема: Затмения в двойных системах происходят регулярно, с четким периодом обращения. Здесь никакой периодичности нет.
Версия 4: белый карлик с аномальным магнитным полем
Некоторые белые карлики обладают чрезвычайно сильными магнитными полями и могут производить радиовспышки.
Проблема: белые карлики горячие — их можно наблюдать в ультрафиолетовом и видимом диапазонах. Объект ASKAP J173608.2-321635 невидим в этих спектрах.
Версия 5: коричневый карлик с радиовспышками
Коричневые карлики — "неудавшиеся звезды" — иногда производят мощные радиовсплески из-за магнитной активности.
Проблема: коричневые карлики излучают преимущественно в инфракрасном диапазоне. Они недостаточно горячи для того, чтобы наблюдать их в оптические телескопы, но по ИК-излучению их легко найти. Здесь инфракрасного излучения нет.
В настоящее время научное сообщество склоняется к радикальной гипотезе: мы нашли нечто, для чего у нас нет теоретической модели. Вероятно, мы столкнулись с новым классом космических объектов, который выходит за рамки наших стандартных классификаций.
История науки знает такие примеры. Например, когда в 1967 году открыли первый пульсар, то астрономы были так поражены, что устроили масштабную проверку данных — сигнал был настолько регулярным, что его даже в шутку назвали LGM-1 (Little Green Men — "маленькие зеленые человечки"). Потребовалось время, чтобы понять: это быстровращающаяся нейтронная звезда.
А когда в 1960-х годах обнаружили первые квазары, то их яркость казалась невозможной, а удаленность от Земли — просто запредельной. Потребовались десятилетия исследований, чтобы ученые осознали, что имеют дело со сверхмассивными черными дырами, активно пожирающими окружающую материю.
Возможно, ASKAP J173608.2-321635 — начало новой главы в астрономии.
Почему именно там? Во-первых, это относительно недалеко. Во-вторых, это единственное место в Солнечной системе, которое полностью изолировано от радиопомех с Земли (телевещание, спутниковые сигналы). В-третьих, это позволит нам лучше понять эволюционный механизм Вселенной за счет наблюдения недоступной ранее части спектра.
Основой LCRT станет сетка из тонкой проволоки (рассматривается вариант из космического алюминия), натянутая в кратере диаметром 3-5 километров. Эта сетка будет формировать параболический рефлектор диаметром в один километр, что сделает его крупнейшим радиотелескопом с заполненной апертурой в распоряжении человечества. В центре этой "чаши" будет подвешен приемник для улавливания отраженных радиосигналов.
Примечательно, что процесс строительства будет полностью автоматизирован за счет умных роботов-роверов DuAxel, специально разрабатываемых для автономного перемещения по сложному лунному рельефу и реализации поставленных задач.
DuAxel — разделяемые роботы, состоящие из двух частей: одна будет служить якорем на краю кратера, а вторая — спускаться на тросе для выполнения работ по натяжению сетки.
Телескоп сможет принимать сверхдлинные радиоволны (длиной более 10 метров), которые не проходят через земную ионосферу. Благодаря этому мы сможем изучать "темные века" Вселенной — период между Большим взрывом и появлением первых звезд.
Я уже некогда публиковалматериало том как космический телескоп James Webb если и не перевернул, то во всяком случае, сильно пошатнул современные представления о ранней вселенной, обнаружив в оной неожиданно большое количество звезд и галактик. Гораздо большее, нежели ожидалось согласно космологическим моделям ранней эволюции вселенной.
Проблему кое-как удалось запихать под ковер. Но недавно, JWST подложил официальной космологии новую свинью. Согласно официальной парадигме, изначально во вселенной существовали только два химических элемента - водород и гелий (все что тяжелее, астрономы и астрофизики называют "металлами"), все более тяжелые элементы появились уже только в ходе термоядерных реакций внутри первых звезд. И то сначала металлов было довольно мало. Многие астрономы даже предполагают, что 5 миллиардов лет назад, когда появилась Солнечная система - это самый ранний срок для возникновения планет наподобие Земли.
И вот недавно, James Webb преподнес очередной сюрприз - оказывается, металлы существовали уже буквально через какие-то сотни миллионов лет после Большого Взрыва!
Чтобы ответить на этот вопрос, нам придется вернуться назад во времени, в 1916 год, когда Альберт Эйнштейн, один из величайших умов в истории, опубликовал свою общую теорию относительности.
До 1916 года физики, пытаясь объяснить, что такое гравитация и почему она существует, выдвигали бесчисленное множество всевозможных гипотез. Ни одна из них не устраивала Эйнштейна, и он предложил свое объяснение: гравитация — это искривление пространства-времени.
Пространственно-временной батут
Математически Эйнштейн доказал, что за гравитационные эффекты отвечает искривление пространства-времени. Батут — отличный способ продемонстрировать это сложное явление на плоской поверхности.
Представьте, что вы кладете пушечное ядро в центр батута — его масса прогибает полотно, создавая впадину. Если мы поместим у внешнего края батута теннисный мяч, то он покатится не просто внутрь, но и вокруг ядра.
Гравитация — искажение ткани пространства-времени, влияющее на движение объектов.
Именно это объясняют знаменитые математические уравнения Эйнштейна — как пространство-время ведет себя при различных физических условиях.
Мы знаем, что во Вселенной все и всегда находится в постоянном движении. И когда объекты ускоряются в пространстве-времени, они могут создавать небольшую рябь, подобно камешку, брошенному в спокойную воду пруда.
Эта рябь — то, что мы называем гравитационными волнами.
Эйнштейн, предсказывая их существование, сомневался, что когда-нибудь в распоряжении человечества появится сверхчувствительный инструмент, который сможет зафиксировать эти ничтожно малые колебания, сотрясающие при этом всю Вселенную.
Хотелось бы узнать, как бы он отреагировал на тот факт, что мы не просто подтвердили существование гравитационных волн, но и зафиксировали около 300 событий, начиная с 2015 года. Это одно из крупнейших достижений в физике, и то, как ученым удалось осуществить это, просто взрывает мозг!
Сжатие и растяжение
Когда гравитационная волна проходит через Землю, она слегка сжимает или растягивает всю планету в направлении своего движения. Измерить такой эффект с помощью обычной линейки невозможно — ведь сама линейка тоже растянется или сожмется вместе с пространством, и показания останутся неизменными.
Поэтому для этих целей физики решили использовать свет, который за определенное время может пройти определенное расстояние. Если пространство растянуто, то свету придется пройти большее расстояние, потратив на это больше времени. И наоборот, если пространство сжато.
Чтобы узнать, сжалось или растянулось пространство, нужно измерить его в двух направлениях и вычислить разницу. Звучит просто, но осуществить подобное на практике — сложнейшая задача. Все дело в том, что искомая разница в расстоянии в 1 000 раз меньше крошечной частицы, именуемой протоном. Для понимания масштаба: в наших телах содержится около 10 октиллионов протонов (единица с 28 нулями). А детекторы должны уловить изменения, которые в тысячу раз меньше одной такой частицы.
Как уловить невозможное?
Для решения этой задачи ученые создали невероятно сложные устройства — лазерные интерферометры. Принцип их работы основан на измерении расстояния между специальными тестовыми массами с помощью лазерных лучей.
Тестовые массы устанавливаются на огромном расстоянии друг от друга — это позволяет сделать даже мельчайшие изменения достаточно заметными для измерения. Эти массы тщательно изолируются от всех возможных помех, кроме одной — гравитации, от которой защититься невозможно.
Лазеры непрерывно измеряют точное расстояние между массами. Когда проходит гравитационная волна, пространство-время слегка растягивается или сжимается, и время, необходимое свету для преодоления расстояния между массами, изменяется. Эти крошечные изменения и улавливают детекторы.
Первый улов
14 сентября 2015 года произошло событие, навсегда изменившее науку. Детекторы LIGO в США впервые зарегистрировали гравитационные волны от слияния двух черных дыр, произошедшего на расстоянии около 1,3 миллиарда световых лет от нас.
В 2017 году к охоте присоединился европейский детектор Virgo в Италии, а в 2020 году — японский детектор KAGRA. На начало 2030-х годов намечен запуск космического детектора гравитационных волн LISA в рамках программы Европейского космического агентства.
Что нам рассказывают волны?
Гравитационные волны подарили нам совершенно новый способ изучения Вселенной. Они помогают понять фундаментальные законы физики и рассказывают о самых грандиозных событиях космоса, которые невозможно наблюдать напрямую: формировании галактик, росте и слиянии сверхмассивных черных дыр, рождении и смерти звезд.
Ученые убеждены, что будущие детекторы позволят нам "заглянуть" в первые мгновения после Большого взрыва и приблизиться к пониманию того, как зарождалась наша Вселенная. Каждая новая зафиксированная гравитационная волна — это послание не только из глубин Вселенной, но и из невообразимо далекого прошлого.
Парочка чуваков, в 1965 году настраивала девайс для космической связи и радионаблюдением неба. Они никак не могли избавится от шумов в области 160 ГГц (это много, длина волны всего ~ 2мм). Ходят слухи, что они из приёмного волновода - эдакий "рупор" - даже голубиные фекалии выгребали, думали что проблема в них.
Тот самый рупор - спасибо википедии за фоточку
Но теоретики была первее, как всегда. В 1948 году реликтовое излучение было предсказано Георгием Гамовым,
Ральфом Альфером и Робертом Германом на основе созданной ими первой
теории горячего Большого взрыва. Более того, Альфер и Герман смогли
установить, что температура реликтового излучения должна составлять 5 К,
а Гамов дал предсказание в 3 К и оказался прав.
Дальнейшие теоретические исследования теории Большого взрыва показали удивительную вещь. Сначала был момент сингулярности (тут физики ничего не могут сказать толком, так как выходят за пределы планковских параметров (планковские длина, энергия, время и т.п.) - это те пределы на которых работает математика квантовой физики). После этого появилась кварк-глюонная плазма за счёт расширения пространства времени (ΛCDM-модель во все поля).
За счёт расширения температура падала, начали образовываться привычные (на слуху) частицы вроде протонов, нейтронов и электронов - эпоха отделения электрослабого взаимодействия. Именно тогда появляются фотоны. Но им из-за большой плотности вещества некуда дется - они постоянно учавствуют в к-либо квантовых взаимодействиях.
И только когда вселенная ещё немного расширилась, начали образовываться Водород, Гелий и немного Лития - только тогда фотончики смогли вырваться из этой вечной битвы. И именно они, стали видны в качестве реликтового излучения. Произошло это примерно 375 тысяч лет от начала рождения пространства-времени, (нашей вселенной) т.е. "большого взрыва". Т.е. наша вселенная стала прозрачной (transparent) для фотонов (привет ивент ;) ). И не надо смотреть на картинку выше и область, обозванную "Тёмные века" - вселенная стала "прозрачной" для фотонов - они уже не так часто "сталкивались" с другими участниками движухи - плотность "квантовых гопников" резко снизилась, и "мелкие безмассовые" смогли шмыгать между них несталкиваясь.
Ну а "Тёмные века" - просто там, кроме фотончиков реликтового излучения никого и небыло. Телескоп "Джеймс Уэбб" зафиксировал свет от самых первых галактик (но и его возможности не безграничны), с учётом ошибок измерения возраст первых галактик, которые он увидел, оценивается от 320 до 400 млн. лет сначала "Большого взрыва". Так что, думаю, новостей нам может в будущем и прибавится...
Спиральная сейфертовская галактика NGC 5495, находящаяся на расстоянии около 300 миллионов световых лет от Земли, которая наделена особенно яркой центральной областью.
Сейфертовской называется галактика с чрезвычайно активным ядром, которое представлено "прожорливой" сверхмассивной черной дырой, разгоняющей приближающиеся газопылевые облака до гигантских скоростей (несколько тысяч километров в секунду).
Примечательно, что некоторой части газа, разогретого до миллионов градусов Цельсия, все же удается "убежать" от черной дыры; этот раскаленный поток сталкивается с холодными облаками газа, передает им энергию и запускает звездообразование. Выходит, что активные черный дыры — одна из причин рождения звезд.
Обратите внимание на несколько звезд в кадре, от которых как бы исходят четыре шипа. Эти звезды являются частью Млечного Пути, расположившись между Землей и NGC 5495, а шипы — оптические артефакты.
Снимок был получен космическим телескопом NASA/ESA "Хаббл" 26 сентября 2022 года.
Вопрос о существовании разумной жизни за пределами Земли остается одной из величайших загадок для современной науки. Сегодня, когда современные космические телескопы регулярно открывают новые экзопланеты, а наши представления о масштабах Вселенной постоянно расширяются, поиск внеземных цивилизаций перешел из области фантастики в сферу серьезных научных исследований.
В основу этой статьи легли размышления профессора Джонти Хорнера из Центра астрофизики Университета Южного Квинсленда.
По мнению ученого, существование разумной жизни во Вселенной не вызывает сомнений. Однако главная проблема заключается в том, достаточно ли близко находятся другие цивилизации, чтобы человечество могло их обнаружить и, возможно, даже вступить с ними в контакт.
Масштабы космоса
Космическое пространство невероятно велико. За последние несколько десятилетий астрономы доказали, что планетные системы — это не редкость, а правило: практически у каждой звезды есть планеты. Наша галактика Млечный Путь насчитывает около 400 миллиардов звезд. Если предположить, что на орбите каждой из них находится в среднем по пять планет, то только в нашей Галактике существует два триллиона планет. При этом современная наука установила поразительный факт: в наблюдаемой Вселенной галактик больше, чем планет в Млечном Пути.
При таком колоссальном разнообразии миров представляется практически невозможным, что Земля — единственная планета, на которой возникла жизнь, включая разумную и технологически развитую. Однако обнаружить внеземные цивилизации будет невероятно сложно.
Вероятность обнаружения
Хорнер предлагает рассмотреть следующий сценарий: допустим, только у одной из миллиарда звезд есть планета, на которой могла развиться технологически продвинутая цивилизация, способная заявить о своем существовании во всеуслышание. В таком случае, в Млечном Пути будет около 400 звезд с развитой жизнью. Но наша Галактика настолько огромна — 100 000 световых лет в диаметре — что среднее расстояние между такими звездами составит порядка 10 000 световых лет.
При современном уровне развития технологий такие расстояния делают обнаружение инопланетных сигналов практически невозможным, если только они не обладают мощностью, значительно превосходящей возможности земных передатчиков. Даже если предположить, что некая цивилизация неосознанно распространяет радиоволны по всем направлениям, как это делает человечество, шансы зафиксировать такой сигнал крайне малы.
Таким образом, хотя существование внеземных цивилизаций представляется вполне вероятным с научной точки зрения, поиск доказательств их существования остается одной из сложнейших задач современной астрономии. Возможно, для ее решения потребуются принципиально новые технологии и методы наблюдения, разработка которых станет делом будущих поколений исследователей.
Недавно мне написали из издательства «Питер» и предложили три научно-популярных книги на обзор. Я сразу же согласился, так как это очень интересно. Сразу же скажу, что это не реклама, обзоры я делаю бесплатно. Поэтому могу быть объективным и не будет конфликта интересов. Если мне будут писать из издательств, игровых студий или ещё откуда-нибудь с предложениями сделать обзор на произведения, которые они издали, — никогда не буду делать этого в рамках рекламы. Только честные и объективные обзоры! Если вы издатель и вас устраивает это условие, пишите! С радостью по мере сил посмотрю, и если будет интересно, сделаю материал в своём проекте.
А начну я с книги научно-популярного блогера, а точнее подкастера, Романа Юдаева «Звездануло: весело и доступно про проблемы современной физики и астрономии».
Книга небольшая: чуть больше двухсот страниц. Но это не недостаток. Ведь автор ведёт свой популярный подкаст и, наверное, к повествованию нужно относиться так же. Когда я прочитал начало, меня не покидало ощущение, что читаю не какую-нибудь научпоп-книгу про космос, где нужно ещё самому долго сидеть и думать, что же сказал автор. Особенно когда мало знаний. Это книга-рассказ. Скорее всего, автор, когда писал её, представлял, что записывает подкаст и именно разговаривает со слушателем/читателем. Это мне импонирует, так как я сам так пишу тексты. Выделяю несколько моментов, что обязательно хочу сказать, и пишу «от себя». Поэтому могу смело рекомендовать её детям и подросткам, которые либо начали изучать физику в школе, либо решили в более раннем возрасте прикоснуться к ней. Но её можно смело читать и взрослым, которым нужен хоть какой-то «вход» в мир научпопа и которые хотят начать познавать мир. Тут могу рассказать об одном недостатке книги. Да, есть маскот — гусь, который помогает читателю визуализировать то, о чём идёт рассказ, но иллюстраций в таком труде всё-таки мало. Наверное, можно было бы давать сноски на свой же подкаст (по выпускам) или на статьи в интернете, где больше про это рассказано. Ведь в чём плюс многих научпоп-роликов — это что всё визуализировано на экране. Роману Юдаеву в будущем пожелаю больше писать таких книг. Может, мы ещё увидим интересные книги от него. Ведь эта область безгранична, каждый год происходят новые открытия, которые завораживают.
Если вам интересны мои текстовые или видеообзоры, то подписывайтесь на меня на Вомбате! Постараюсь и дальше радовать вас интересным контентом. Буду очень рад подписке на мой YouTube-канал: https://www.youtube.com/@ivan_lutz
Все крупные космические тела во Вселенной, которые мы наблюдаем — от планет до звезд — имеют сферическую форму. И чем массивнее объект, тем более идеальной становится эта сфера. Почему же природа так настойчиво выбирает именно эту форму? Давайте разберемся на примере планеты.
Итак, все дело в гравитации. Когда планета формируется, она начинает притягивать к себе все больше материи — пыль, газ, астероиды. С ростом массы усиливается и гравитационное поле. Сила тяжести всегда направлена к центру тела, стремясь придать ему максимально компактную форму. А самая компактная форма в природе — это сфера.
Почему планета не может быть кубической?
У куба есть углы, которые находятся дальше от центра массы, чем остальные части. Гравитация не позволит этому существовать — она будет "стягивать" углы к центру, пока планета не примет форму шара — самую устойчивую форму для массивных космических объектов.
Кроме того, кубическая форма создала бы огромные перепады давления и температуры. Углы куба испытывали бы колоссальное напряжение, что привело бы к их разрушению. В итоге планета все равно бы "схлопнулась" в шар.
Малые космические тела, такие как кометы, астероиды и небольшие спутники, часто имеют неправильную форму, потому что их масса слишком мала, чтобы гравитация могла "вылепить" из них сферу. Для сравнения: астероид Психея с диаметром около 226 километров имеет неправильную форму, в то время как Земля с диаметром 12 756 километров стремится к идеальной сфере.
Впрочем, даже планеты не являются безупречными шарами. Из-за вращения вокруг своей оси они слегка сплющиваются на полюсах и расширяются на экваторе (звезды, между прочим, тоже). Это называется экваториальным утолщением. Например, полярный радиус Земли на 21,38 километра короче экваториального.
Интересный факт: Мимас, 396-километровый спутник Сатурна, является самым маленьким известным космическим телом, обладающим сферической формой из-за собственной гравитации.
Кинематограф и научная фантастика обожают изображать черные дыры как "космические пылесосы", безжалостно втягивающие все вокруг — от космических кораблей до планет и гигантских звезд.
Такие сцены выглядят эффектно и пугающе, но насколько они соответствуют реальности? К счастью, истинная физика черных дыр куда менее апокалиптична, но при этом гораздо интереснее.
Гравитационное поле
Черные дыры подчиняются тем же законам гравитации, что и любые другие объекты в нашей Вселенной. Их притяжение зависит от массы и расстояния — чем дальше вы находитесь, тем слабее их влияние. Никакой магической всепоглощающей силы у них нет.
Допустим, если бы наше Солнце внезапно превратилось в черную дыру, сохранив свою массу, то как бы изменилась организация Солнечной системы? Абсолютно никак! Все объекты продолжали бы вращаться по тем же орбитам, на том же расстоянии. Да, со временем климатические условия на Земле изменились бы в худшую сторону, но упорядоченность Солнечной системы осталась бы неизменной. Черная дыра с солнечной массой оказывает точно такое же гравитационное влияние на окружающее пространство, что и Солнце. Ни больше, ни меньше.
Галактика в безопасности
В центре нашей галактики Млечный Путь находится сверхмассивная черная дыра Стрелец А*, масса которой почти в 4,3 миллиона раз превышает массу Солнца. Звучит устрашающе? Но давайте посмотрим на цифры.
Диаметр Млечного Пути около 100 000 световых лет. Гравитационное влияние центральной черной дыры ощутимо лишь в радиусе нескольких световых лет от нее. Это как песчинка в центре футбольного стадиона — да, она там есть и взаимодействует с близлежащими песчинками, но на трибунах ее влияние уж точно никто не почувствует.
Звезды вблизи центра Галактики действительно вращаются вокруг черной дыры с огромными скоростями, испытывая ее чудовищное влияние. Например, астрономы давно ведут наблюдения за звездой S2, которая в момент максимального сближения со Стрельцом А* проходит на расстоянии около 120 а.е.* от сверхмассивной черной дыры — и ничего, избегает "засасывания"! Звезда продолжает свое уверенное движение по эллиптической орбите, как делала это миллионы или даже миллиарды лет.
*а.е. — астрономическая единица, среднее расстояние от Земли до Солнца, около 150 миллионов километров.
Более того, любая галактика — очень стабильная система, где все элементы удерживаются вместе благодаря темной материи и суммарной массе всех светил, обеспечивающих надежную гравитационную связь. На черную дыру в центре Млечного Пути — сколь бы грозной не выглядела ее масса на фоне Солнца — приходится менее 0,1% от общей массы Галактики. И Млечный Путь в этом плане не является исключением — это среднее значение для галактик в наблюдаемой Вселенной.
Так что спите спокойно — ни одна черная дыра не способна "проглотить" целую галактику. Законы физики надежно защищают нас от космических кошмаров, порожденных научной фантастикой. Черные дыры опасны только вблизи, а в целом же они ведут себя как обычные массивные объекты — притягивают ровно настолько, насколько позволяет их масса.
В ответ на пост. Естественно есть. Только это не совсем звёзды, как и гипотетические чёрные карлики.
Только вот как раз коричневые и есть, причём обнаружены и доказаны. А что это такое?
Нарисовал неизвестный художник, спёрто с nplus1.ru - ссылка в посте есть.
Да всё просто, представьте наш Юпитер, только раз в десять-двадцать жирнее. Да, гигант газовый, состоит в основном из водорода и гелия, но только "бессердечной суки" - гравитации ему не хватает, что бы сжать водород до начала термоядерной реакции. Потому оно вроде и не звезда. Но, в отличие от чёрного карлика внутри хватает "бурления" за счёт трения, что бы такой субзвёздный объект разогреть до температур от 300 К до 3000 К (э-э-э- К - это Кельвины, для Цельсия надо в уме прибавить 273). Т.е. они современными методами вполне себе обнаруживаются, имеют что-то вроде планет, но 3000 градусов с поверхности - маловато будет для обогрева спутник/планеты что бы там хоть что-то зародилось.
Что с ними делать - да ничего, просто изучать. Жизни такая система не даст, да и вообще толку никакого. Белый карлик хотя бы имеет достаточно накопленной энергии, что бы обогревать к-либо рядом, при условии, что становясь карликом он не выжег всё вокруг, будучи красным гигантом.
Представьте себе космос, настолько далекий во времени, что даже самые долгоживущие звезды погасли. В этой невообразимо далекой перспективе мы сталкиваемся с понятием черных карликов - финальной стадии эволюции солнцеподобных звезд. Но что это за объекты, и почему мы никогда их не видели?
История черного карлика начинается задолго до его рождения. Когда звезды малой или средней массы, подобные нашему Солнцу, исчерпывают запас ядерного топлива, они переживают драматическую трансформацию. Эти светила значительно расширяются, превращаясь в красных гигантов и увеличивая свой диаметр в сотни раз. Затем эти звезды сбрасывают внешние оболочки, оставляя после себя плотное, раскаленное ядро - белый карлик.
Белые карлики - это уже не звезды в привычном понимании. Они не генерируют энергию путем ядерного синтеза. Вместо этого они медленно остывают, излучая накопленное тепло в космос. Этот процесс похож на то, как остывает уголек в потухшем костре, только растянутый на миллиарды лет.
Путь к черному карлику
Со временем белые карлики становятся все холоднее и тусклее. Астрономы предполагают, что в какой-то момент их температура сравняется с температурой реликтового излучения - космического микроволнового фона, заполняющего всю Вселенную. Когда это произойдет, белый карлик перестанет излучать видимый свет и превратится в черного карлика - невидимый холодный объект, дрейфующий в космической тьме.
Интересно, что ни один черный карлик еще не был обнаружен. Почему? Ответ кроется во времени. Процесс остывания белого карлика до состояния черного карлика занимает невообразимо долгий период - десятки миллиардов лет. Это больше, чем возраст самой Вселенной, которой "всего" 13,8 миллиарда лет!
На пороге трансформации
Хотя мы еще не видели черных карликов, астрономы наблюдали очень холодные белые карлики. Эти объекты, вероятно, находятся на последних (относительно, конечно) этапах своей эволюции, приближаясь к финальному превращению в черных карликов. Исследование таких объектов дает нам представление о том, как может выглядеть этот процесс.
Взгляд в далекое будущее
Изучение жизненного цикла звезд, от их зарождения до гипотетического превращения в черных карликов, расширяет наше понимание Вселенной. Этот процесс демонстрирует, что даже такие долгоживущие объекты, как звезды, подвержены фундаментальным изменениям. Наблюдая за эволюцией светил, мы получаем представление о масштабах времени, значительно превосходящих историю человечества, и о непрерывных трансформациях, происходящих в космосе.
На расстоянии около 5 200 световых лет от Земли раскинулась величественная туманность Розетка (NGC 2237) — одна из самых впечатляющих звездных "фабрик" нашей Галактики. Здесь, в огромном облаке газа и пыли диаметром 130 световых лет, рождаются настоящие звездные гиганты.
Изображение было получено 12 апреля 2010 года космической обсерваторией Европейского космического агентства (ESA) "Гершель", и на нем запечатлен один из самых активных регионов звездообразования в туманности Розетка.
Наиболее яркие области на снимке — это своеобразные "коконы" из газа и пыли, где развиваются массивные протозвезды. Каждый такой зародыш эволюционирует в звезду, которая будет как минимум в десять раз массивнее нашего Солнца. В верхней части изображения (отмечена на снимке ниже) видны небольшие светящиеся пятна — это звездные зародыши меньшей массы, находящиеся на раннем этапе развития.
Судьба таких космических гигантов предопределена их массой. В отличие от солнцеподобных звезд, живущих миллиарды лет, эти титаны проживут "всего" несколько миллионов лет. Объясняется это просто: чем массивнее звезда, тем быстрее она расходует свое термоядерное топливо. Когда оно закончится, каждая из этих звезд встретит свой конец в грандиозном взрыве сверхновой.
Однако гибель этих звезд станет началом нового цикла звездообразования. Вспышки сверхновых обогатят окружающее пространство тяжелыми элементами и создадут ударные волны, которые сожмут соседние облака газа и пыли, запуская формирование следующего поколения звезд. Так, в бесконечном танце созидания и разрушения, Вселенная поддерживает вечный круговорот звездной жизни.
Колесо Телеги (ESO 350-40) — одна из самых впечатляющих галактик в наблюдаемой Вселенной. Эта удивительная космическая структура, напоминающая гигантское колесо со спицами, находится в созвездии Скульптора на расстоянии около 500 миллионов световых лет от Земли.
Своими размерами она превосходит наш Млечный Путь почти в полтора раза — ее диаметр достигает колоссальных 150 000 световых лет.
История этой линзовидной галактики не менее захватывающая, чем ее внешний вид.
Изначально Колесо Телеги была обычной спиральной галактикой, но примерно 200-300 миллионов лет назад произошло драматическое событие — небольшая галактика-спутник буквально пронзила Колесо Телеги насквозь.
Это столкновение породило мощнейшую гравитационную ударную волну, которая прокатилась по всей галактике. Двигаясь на колоссальной скорости, волна сжимала газ и пыль, запуская процесс взрывного звездообразования вокруг центральной части.
В центре ESO 350-40 расположено яркое ядро, наполненное раскаленной космической пылью. Вокруг него сформировалось характерное кольцо, содержащее несколько миллиардов молодых звезд.
Сейчас астрономы наблюдают удивительный процесс — галактика постепенно возвращается к своей первоначальной форме; ее характерные "спицы колеса" начинают трансформироваться в рукава.
Детали этого космического великолепия удалось рассмотреть благодаря космическому телескопу NASA "Джеймс Уэбб". Цветное изображение было обнародовано 2 августа 2022 года.
Глядя на ясное ночное небо, мы видим тысячи мерцающих точек, каждая из которых может быть солнцем для своих планет. И в нашей Галактике сотни миллиардов звезд, и у подавляющего большинства из них есть планетные системы. Но почему тогда мы до сих пор никого не встретили? Этот простой вопрос привел ученых к одной из самых интригующих загадок современности — гипотезе великого фильтра.
Наука говорит, что для появления разумной жизни нужно пройти множество важных этапов. Это как длинная лестница, где каждая ступенька – ключевое событие: появление первых живых клеток, развитие многоклеточных организмов, возникновение разума, создание технологий. Великий фильтр – это одна из этих ступеней, настолько крутая, что почти никому не удается ее преодолеть.
В чем суть этой гипотезы?
Нашей Вселенной примерно 13,8 миллиарда лет. За столь огромный промежуток времени могло появиться огромное количество развитых цивилизаций, а некоторые из них могли бы даже заселить значительную часть своей галактики, оставив заметные следы. Но мы не видим никаких признаков разумной жизни за пределами Земли. И тут возникает тревожный вопрос: где находится этот великий фильтр — позади нас или впереди?
Если фильтр уже пройден (например, это был сам факт появления сложной клеточной жизни), то мы преодолели самое трудное, и наши шансы на выживание довольно высоки. Но если фильтр ждет нас в будущем — например, это неспособность цивилизации справиться с собственными технологиями или природными катастрофами, — то картина становится куда менее оптимистичной.
Если фильтр в прошлом, он мог быть связан с невероятной сложностью появления жизни (подходящая температура, нужные химические элементы, правильная последовательность реакций – все это должно было совпасть в одном месте и в одно время). Это похоже на попытку собрать работающий компьютер, случайно перемешивая детали в коробке – шансы, что все сложится правильно, исчезающе малы.
Если же фильтр находится впереди, у него может быть несколько форм:
Самоуничтожение через войны или опасные технологии;
Истощение необходимых ресурсов раньше, чем цивилизация сможет покинуть свою планету;
Космические катастрофы — падения астероидов или комет, вспышки сверхновых и гиперновых звезд на относительно небольшом расстоянии;
Физические ограничения, делающие межзвездные путешествия практически невозможными (как синдром Кесслера, когда космический мусор запирает цивилизацию на планете с ограниченными ресурсами);
Биологические угрозы — пандемии, созданные природой или самой цивилизацией, против которых нет защиты;
"Ловушка развития" — когда цивилизация достигает комфортного уровня жизни и теряет стремление к дальнейшему развитию и космической экспансии;
Фундаментальные проблемы сознания — возможно, развитие искусственного интеллекта или изменение собственного разума приводит к непредсказуемым последствиям.
Гипотеза великого фильтра помогает понять, насколько хрупкой может быть цивилизация и как важно ее сохранить. Каждый технологический прорыв, каждое научное открытие – это шаг в неизвестность, который может либо приблизить нас к преодолению фильтра, либо стать той самой преградой, о которую разбиваются цивилизации.
И именно поэтому поиск внеземной жизни теперь становится чем-то большим, чем просто исследование космоса. Если мы найдем хотя бы простейшие формы жизни на других планетах, это может подсказать нам, где находится великий фильтр. А такое знание может оказаться решающим для выживания человечества.
Может быть, главный урок этой гипотезы в том, что наша цивилизация гораздо более уникальна и хрупка, чем мы привыкли думать. И чем лучше мы это понимаем, тем больше шансов успешно пройти все испытания на пути к звездам.
14 июля 2015 года космический аппарат NASA "Новые горизонты" получил самые детальные на сегодняшний день снимки Никты — одного из пяти известных спутников Плутона.
Недавно исторические фотографии были объединены и обработаны с помощью современных алгоритмов машинного обучения, что позволило получить довольно детальное цветное изображение (ниже) загадочного объекта.
Никта, открытая 15 мая 2005 года космическим телескопом NASA/ESA "Хаббл" одновременно со спутником Гидра, представляет собой необычное небесное тело неправильной формы размером примерно 50 × 33 × 31 километров. Свое название спутник получил в честь древнегреческой богини ночи Нюкты (Никты).
Долгое время считалось, что Никта, как и другие малые спутники Плутона, образовалась из обломков, выброшенных при столкновении Плутона с крупным объектом пояса Койпера. Однако эта гипотеза не может объяснить удивительно высокую отражательную способность спутника. Современные исследования предполагают, что Никта сформировалась независимо от Плутона из первичного облака ледяных частиц — остатков материала, из которого формировалась Солнечная система. А уже после объект бы "похищен" Плутоном и превращен в его естественный спутник.
Поверхность Никты покрыта крупнозернистым водяным льдом, температура которого не поднимается выше -230°C. При таком экстремальном холоде лед приобретает прочность, сравнимую с земными горными породами.
Особый интерес ученых вызывает крупное темное пятно на поверхности спутника — след древнего столкновения с другим космическим телом. Красновато-коричневый материал в этой области мог принадлежать объекту-импактору или был выброшен из недр самой Никты.
В настоящее время NASA и Юго-западный исследовательский институт рассматривают возможность организации новой миссии к системе Плутона для детального изучения карликовой планеты и ее загадочных спутников. Это может помочь раскрыть тайны формирования и эволюции объектов как окраинах Солнечной системы, так и в ее внутренней области.
На Марсе, в северных низменностях планеты, расположен удивительный природный феномен – кратер Королёва, настоящий ледяной оазис диаметром 82 километра. Он находится к югу от обширного поля дюн Olympia Undae, которое окружает часть северной полярной шапки планеты.
Кратер Королёва — это не просто впадина в марсианской поверхности, а уникальная природная морозильная камера, хранящая гигантские запасы водяного льда.
Естественный холодильник
Кратер Королева заполнен массивом льда толщиной 1,8 километра, который сохраняется круглый год. Это один из наиболее хорошо сохранившихся примеров марсианских кратеров, заполненных именно водяным льдом.
Механизм холодной ловушки
Кратер Королева представляет собой глубокую чашу, дно которой расположено почти на два километра ниже окружающей поверхности. Когда воздух проходит над ледяной поверхностью, он охлаждается и, становясь тяжелее, опускается вниз. Этот холодный воздух создает защитный слой непосредственно над льдом, действуя как изолятор.
Поскольку воздух – плохой проводник тепла, образуется своеобразный "щит", защищающий лед от нагревания и испарения. Благодаря этому естественному механизму кратер остается замороженным постоянно.
Исследования с орбиты
Первые снимки кратера были получены 4 апреля 2018 года камерой высокого разрешения HRSC космического аппарата ESA "Марс-экспресс". Для создания полной картины потребовалось объединить пять длинных полос изображений, снятых во время разных пролетов над кратером. Позже свой вклад в исследование внес и аппарат ESA Trace Gas Orbiter, который сфотографировал 40-километровый участок северного края кратера.
Кратер назван в честь Сергея Павловича Королёва, главного конструктора советской космической программы. Под его руководством были созданы первые искусственные спутники Земли в рамках программы "Спутник", осуществлены первые полеты человека в космос (программы "Восток" и "Восход", включая полет Юрия Гагарина в 1961 году), а также запущены первые межпланетные миссии к Луне, Марсу и Венере. Королев также работал над ракетами, которые стали предшественниками успешных носителей "Союз" – рабочих лошадок российской космической программы, используемых как для пилотируемых, так и для автоматических полетов.