Сказали-надо. Денег немножко дали. Ладно, че- маршрут построен.
Перелет Улей-Москва 1,3 часа, ценник 5200, авиакомпания Победа. Билет без багажа- только ручная кладь. Купил на вайлдберисе сумку с самолетиком указанного размера- 36 на 30 на 27. В сумку можно слона сложить, летел с полупустой- мне столько не надо шмотья. При этом в сумке ноут, тапки, 4 рубашки, штаны, носки-трусы, бритвы-пасты. Сумка ОЧЕНЬ вместительная оказалась. На регистрации к моей сумке вообще не прикапывались- напарника заиграли, раза три заставляли запихуить в калибратор. В общем, очень удачно я 600 рублей пристроил)))
Дальше со Внуково на Киевский вокзал. На метро с одной пересадкой- 70 рублей. Аэроэкспресс без пересадок около тысячи))) Ну, мы не настолько торопились.
Отсюда до Калуги электричка. экспресс 2,5 часа, обычная 3,5 часа. Мы ехали на скоростной.
В городе прямо осенняя осень)))
Вечером шатались по городу. Нашли- случайно- могилу Циолковского. Оформлена как парк. Ну... Неожиданно
Недалеко- грустный Гоголь. Осенний.
Музей космонавтики впечатляет. Звезда музея- дублер ракеты Гагарина. Та, что была на случай, если первая сломается. И не полетела. Впечатляет.
Еще стратегические крылатые ракеты
И всякие космические спутники
Виды великолепные
Город небольшой, уютный, домашний. Народ доброжелательный и добрый.
Часто туман. Очень часто туман. Мне было реально мало света. Наши семь ветров облака разгоняют и у нас, в основном, ясно и солнце. Было непривычно. Очень высокая влажность- местность болотистая. В низинах около домов, где перманентные лужи, спокойно растет камыш. В черте города. Никого не удивляет. Белье за двое суток на балконе так и не высыхает до конца, досыхает на теле.
В целом- здорово, интересно, город бодрый, растущий и живой. Поездка была интересная, зарядила позитивом. Климат действительно не мой- но за неделю проблемы никакой не составило.
Калуга, ты впечатлила меня. Спасибо за гостеприимство)))
Благодаря космическому телескопу NASA/ESA "Хаббл" в распоряжении человечества есть потрясающие детальные снимки звездного шарового скопления NGC 6397 — настоящего реликта ранней Вселенной возрастом около 13,4 миллиарда лет.
Скопление NGC 6397 расположено в созвездии Жертвенника на расстоянии около 7 800 световых лет от Земли. При диаметре "всего" 68 световых лет, скопление является домом для более чем 400 000 звезд, связанных между собой гравитационно.
Что делает NGC 6397 особенным?
Нам очень повезло, что столь древний объект является одним из ближайших к нам шаровых скоплений. Это позволяет астрономам изучать его структуру в мельчайших деталях, что обогащает наши знания об эволюции звезд, скоплений, галактик и Вселенной в целом.
В центре скопления звезды упакованы настолько плотно, что расстояние между ними составляет всего несколько световых недель. Для сравнения: Проксима Центавра, ближайшая к Солнцу звезда, находится на расстоянии около 4,2 световых года.
Чрезвычайно плотная упаковка светил в NGC 6397 приводит к тому, что они оказывают друг на друга сильное гравитационное влияние, сближаясь и порой даже сталкиваясь. Среди звездного населения NGC 6397 особенно интересны "голубые отстающие" (англ. blue stragglers) — звезды, которые выглядят намного моложе своих соседей. Ученые считают, что они образуются в результате слияния двух менее массивных звезд или "омолаживаются" благодаря поглощению части вещества звезды-компаньона.
Звездные часы Вселенной
Белые карлики в NGC 6397 служат своеобразными космическими часами. Изучая скорость их остывания, астрономы определили возраст скопления с точностью до нескольких сотен миллионов лет.
Белые карлики — это медленно остывающие остатки звезд, которые когда-то были похожи на наше Солнце, но исчерпали свое ядерное топливо, сбросили оболочки и превратились в сверхплотные объекты размером с Землю. Никто не знает как долго остывают белые карлики и что после них остается, но скорость остывания — величина стабильная, прогнозируемая, что делает их идеальными космическими часами.
Просто задумайтесь: белые карлики скопления NGC 6397 были звездами, которые начали сверкать в тот исторический период, когда Вселенная была совершенно другим местом. Многие галактики только начинали формироваться, а столкновения между ними были куда более распространенным явлением. Большая часть планет Млечного Пути сформировалась только через миллиарды лет после того, как эти древние звезды уже загорелись!
Редкий момент был запечатлен астрономами на дневном небе: астероид, падающий на Луну. Поскольку Луна не имеет атмосферы, астероиды не сгорают, как на Земле, они падают на поверхность с невероятной скоростью, оставляя после себя новые кратеры. Большинство пятен, которые мы видим сегодня на Луне, являются результатом таких жестоких воздействий, которые происходили на протяжении миллиардов лет. Запечатлеть одного из них — это увидеть, как пишется история Луны
То, что выглядит как мифическое чудовище, высунувшее голову из багрового моря, на самом деле представляет собой гигантский столп из газа и пыли, расположенный в созвездии Единорога на расстоянии около 2 500 световых лет от Земли.
Туманность Конус (англ. Cone Nebula) — именно так прозвали этого монстра — получила свое название благодаря характерной конической форме, которую можно увидеть при наблюдении из Солнечной системы.
Детальное изображение, полученное с помощью орбитального телескопа NASA/ESA "Хаббл" показывает лишь верхушку этого космического титана, высота которой составляет примерно 2,5 световых года. А это, между прочим, в 23 миллиона раз больше расстояния от Земли до Луны!
Полная высота столпа составляет примерно семь световых лет, и увидеть целостную картину этой газопылевой структуры (но без детализации) вы можете на любительском снимке ниже:
Обратите внимание на завораживающее красно-розовое свечение вокруг темного столпа. Это ионизированный водород, который под воздействием ультрафиолетового излучения от молодых звезд разогрелся до десятков тысяч градусов и светится характерным цветом.
"Хаббл", к сожалению, не способен "смотреть" сквозь пыль, поэтому эти молодые и нестабильные звезды для нас невидимы — они скрываются за темной газопылевой завесой. Однако известно, что на протяжении миллионов лет эти юные светила неустанно разрушают туманность, благодаря которой они однажды и появились на свет.
Бело-голубые участки — это отраженный звездный свет, рассеиваемый космической пылью.
Звезды, которые выполняют роль "глаз чудовища", находятся между Солнечной системой и туманностью Конус. Остальные же являются фоновыми и расположены намного дальше туманности.
Звездная колыбель в хаосе разрушения
Молодые звезды, разрушающие туманность Конус, создают условия для рождения новых светил. Ультрафиолетовое излучение и звездный ветер генерируют ударные волны, которые сжимают газ, формируя области критической плотности, запуская процесс звездообразования.
Астрономы называют туманность Конус родственницей легендарных Столпов Творения в туманности Орел (M 16). Связано это с тем, что обе структуры устойчивы к разрушительному излучению со стороны своих же звезд за счет обилия холодного газа в основании.
Плотный холодный газ работает как естественный щит — он поглощает и рассеивает ультрафиолетовое излучение, не давая ему полностью испарить столп. Кроме того, низкая температура газа означает низкую скорость его молекул, поэтому он не может быстро "убежать" от гравитационного притяжения туманности.
Все изображения (кроме второго) были получены с помощью космического телескопа "Хаббл" 2 апреля 2002 года.
Спутник Урана Миранда — один из самых странных спутников в Солнечной системе. Этот крошечный мир со средним диаметром 472 километра выглядит так, будто его собрали из обломков разных небесных тел.
На поверхности Миранды соседствуют древние кратерированные равнины возрастом более четырех миллиардов лет и относительно молодые огромные хребты высотой до 20 километров. Как будто кто-то склеил куски совершенно непохожих миров.
Ученые считают, что на раннем этапе своего существования Миранда была практически полностью разрушена гигантским столкновением, а затем заново собрала себя из обломков. Но гравитация "перемешала карты" — молодые и древние фрагменты оказались рядом.
Несмотря на свои крошечные размеры, Миранда обладает собственным слабым магнитным полем, что является редкостью для спутников планет. Данный факт — косвенное доказательство наличия подповерхностного океана.
Сколько всё существует и вечна ли Вселенная? А сколько оно ещё просуществует после Большого взрыва? Даже если принять, что теория, которая есть сегодня, правильная, то во многом время жизни материи и самой Вселенной может описать срок существования самого атома и тут всё очень интересно!
Конечно же, я разобрал всё это в новом ролике на канале и вы очень поможете моей научно-популярной работе, если посмотрите его. Ну а дальше разберем вопрос в текстовом виде.
Давайте начнём с простого. Все ли атомы будут существовать вечно? Понятно, чтослово "вечно" для физики весьма условно, но давайте сопоставлять это с термином "невероятно долго". Ответ - нет.
Некоторые атомы будут стабильными, а некоторые нет. Стабильные атомы илистабильные изотопыне распадаются без внешнего воздействия. Как это работает?
Мы помним, что атом состоит из ядра, вокруг которого располагаются электроны. Само ядро тоже составное и включает в свою конструкциюпротоны и нейтроны.
Протоны склеены друг с другом посредством сильного взаимодействия. Нейтроны компенсируют поведение протонов.
Внутри атома есть электростатическое отталкивание (сила Кулона) - протоны заряжены положительно, поэтому они отталкиваются друг от друга. Чем больше протонов в ядре - тем сильнее это отталкивание. И есть сильное ядерное взаимодействие. Действует между всеми нуклонами (и протонами, и нейтронами). Оно короткодействующее, но очень мощное. Именно оно склеивает ядро.
Устойчивость ядра определяется тем, кто победит: сильное взаимодействие или кулоновское отталкивание.
Некоторые комбинации протонов и нейтронов настолько устойчивы, что их ядро не имеет энергетически выгодного пути распада. Это и будут стабильные изотопы.
Например, это водород-1 (один протон), гелий-4 (2 протона + 2 нейтрона, идеальная коробочка), углерод-12, кислород-16, железо-56 (особо прочное, один из «конечных продуктов» звездных реакций).
Они могут существовать сколь угодно долго — пока не вмешается внешнее воздействие (например, столкновение с частицей высокой энергии).
Напротив, мы знаем про нестабильные изотопы, которые сами разваливаются и и испускают всякую гадость.
Причём тут протоны?
Если вы правильно увидели акценты в начале материала, то заметили, что есть некоторые конфигурации вещества, которые должны жить вечно. Получается, что существуют бессмертные элементы? Особенно интересен тут водород-1.
Хм, ну всё бы неплохо и это так, но современные представления подразумевают, что и сам протон где-то глубоко в теории может распадаться. Сколько же живёт этот протон?
Как мы хорошо знаем, современная физика пошла дальше строения ядра атома и заглянула вглубь самого протона. Удивительно, но внутри ученых ожидала очередная матрёшка, созданная по образу и подобию.Протон (как и нейтрон) сам состоит из кварков.
Получается, что логика с распадом вполне может повториться на уровне протона, а время его жизни во много может измерять а сколько вообще может просуществовать вещество. Неправильноевосприятие этой проблем расставляет ложные акценты и ученые понимают реальность искаженно.
Откуда взялась вся эта путаница и в чём проблема?
Если исчезнут протоны, то исчезнет и вся обычная материя: камни, вода, тела, звёзды и всё вокруг. Современная теория элементарных частиц утверждает чтопротон абсолютно стабилен. В ней просто нет механизма, который позволил бы протону распадаться. Сильное взаимодействие сохраняет так называемоебарионное число- квантовое "правило сохранения", которое запрещает превращение протона в другие частицы.
Но некоторые теории, выходящие за рамки Стандартной модели, напримерВеликое объединение, допускают, что протон всё же может распадаться. Очень редко, но всё же.
Современные эксперименты ищут следы такого распада. Пока ни одного подтверждения не найдено. Занятно, что оценка делается по принципу большой выборки - берут огромное количество протонов и следят за их поведением, полагая, что среди этого множества один будет где-то на подходе.
Срок существования протона на самом деле вопрос о судьбе всего сущего. Если протон действительно бессмертен, то частицы, из которых мы сделаны, будут существовать дольше любых звёзд и галактик. Если же у него всё же есть срок годности, пусть и немыслимо длинный, то сама основа материи в итоге растворится в космической пустоте.
Ио — один из четырех крупнейших спутников Юпитера со средним диаметром 3 643 километра и самое вулканически активное тело в Солнечной системе.
Этот удивительный мир размером чуть больше нашей Луны (диаметр 3 475 километров) буквально трещит по швам под воздействием приливных сил со стороны газового гиганта. На Ио не менее 400 действующих вулканов, выбрасывающих серу, диоксид серы и расплавленные породы на высоту до 300 километров!
Изучение этого огненного мира сопряжено с серьезными рисками для дорогостоящих космических аппаратов. Связано это с тем, что орбита Ио проходит через мощнейшие радиационные пояса Юпитера — области захваченных магнитным полем заряженных частиц. Каждый зонд, приближающийся к Ио, рискует полностью выйти из строя. Несмотря на эти опасности, ученым удалось получить уникальные снимки и собрать бесценные данные.
Я предлагаю вашему вниманию одни из самых впечатляющих фотографий этого инопланетного ада.
Вулкан на Ио
Извержение вулкана на краю диска Ио, запечатленное зондом NASA "Галилео" в июне 1997 года. Это был первый случай прямого наблюдения внеземной вулканической активности в таких деталях.
Полученное изображение стало визуальным доказательством невероятной мощи геологических процессов, протекающих на самом активном теле в Солнечной системе.
Гигантский выброс вулкана Тваштар
Этот кадр — мимолетный взгляд на Ио с помощью камеры космического аппарата NASA "Новые горизонты", который 1 марта 2007 года пролетал мимо системы Юпитера по пути к Плутону.
В момент фотосъемки произошел гигантский выброс вулкана Тваштар (лат. Tvashtar). С данного ракурса видна только верхняя часть извержения — источник находится на 130 километров ниже края диска спутника, на его обратной стороне.
Ио и Европа: контраст миров
Составное изображение вулканически активного спутника Ио и спокойной ледяной луны Европы, полученное путем объединения двух изображений, полученных "Новыми горизонтами" 2 марта 2007 года.
Ио ожидаемо в своем репертуаре — демонстрирует вулканическую активность. Ночная сторона спутника освещена солнечным светом, отраженным от атмосферы Юпитера.
Портрет огненного мира
Общий вид Ио, полученный космическим аппаратом NASA "Галилео" 19 сентября 1997 года с расстояния около 500 000 километров.
Яркие желто-оранжевые и красные оттенки поверхности создают соединения серы различной температуры — от ярко-желтой горячей до темно-красной остывшей. Благодаря постоянным извержениям поверхность Ио полностью обновляется "всего" за несколько миллионов лет — это делает спутник одним из самых "молодых" миров в Солнечной системе.
На снимке цвета усилены (сделаны более насыщенными и контрастными) с целью упрощения идентификации геологических структур.
Натриевое облако Ио
Завораживающий снимок Ио в тени Юпитера, полученный "Галилео" 9 ноября 1996 года с расстояния 2,3 миллиона километров. Яркая вспышка у восточного края спутника — это солнечный свет, рассеиваемый 100-километровым выбросом вулкана Прометей, находящегося на обратной стороне луны.
Желтоватое свечение создают атомы натрия из обширного газового облака вокруг Ио — продукта постоянных вулканических извержений. Этот "натриевый хвост" простирается на миллионы километров и виден даже с Земли в мощные телескопы (при использовании фильтров).
Гора-великан на поверхности Ио
Впечатляющий снимок горного ландшафта Ио, полученный "Галилео" в феврале 2000 года. Невысокий безымянный уступ высотой около 250 метров тянется от верхнего левого угла к центру изображения. Гора Монджибелло, зубчатый хребет в левой части снимка, возвышается почти на семь километров над равнинами Ио.
Ученые считают, что горы Ио появляются в результате тектонического поднятия блоков коры вдоль разломов под воздействием приливных деформаций. Острые, угловатые вершины указывают на молодой возраст горы, тогда как "сглаженные" возвышенности свидетельствуют о более древнем происхождении.
Этот снимок у меня почему-то вызывает некую тревожность.
Первые вулканы за пределами Земли
Историческая фотография от зонда NASA "Вояджер-1", полученная 5 марта 1979 года с расстояния 30 800 километров — первое в истории изображение следов недавней вулканической активности за пределами Земли.
Центральная фигура изображения — вулканическая кальдера диаметром около 50 километров с темными лавовыми потоками, расходящимися от краев на расстояние свыше 100 километров. Некоторые потоки достигают 15 километров в ширину.
Открытие активного вулканизма на Ио стало сенсацией: до этого момента считалось, что любые спутники — очень холодные миры без какой-либо геологической активности.
Япе́т — удивительный спутник Сатурна со средним диаметром 1 469 километров. Он был открыт в 1671 году итальянским астрономом Джованни Доменико Кассини, в честь которого назвали космический аппарат NASA "Кассини", изучавший систему окольцованного газового гиганта с 1 июля 2004 года до 15 сентября 2017 года.
Итак, давайте же совершим небольшое виртуальное путешествие к Япету, чтобы поближе познакомиться с этим далеким и холодным миром, природа которого до сих пор остается одной из главных загадок Солнечной системы.
Двуликий гигант
Первое, что бросается в глаза при изучении снимков Япета, так это его кардинально разные полушария. Одна сторона сатурнианской луны красно-коричневая, а вторая — ослепительно белая. Альбедо* темной стороны составляет всего 0,05 (как копоть), в то время как альбедо светлой стороны — 0,5—0,6 (поверхность почти столь же яркая, как свежевыпавший снег).
*Альбедо — коэффициент, показывающий, какая доля падающего на поверхность света отражается.
Эта дихотомия настолько выражена, что первооткрыватель Кассини мог наблюдать спутник только с одной стороны Сатурна. Япет находится в приливном захвате — он всегда повернут к планете одной стороной, поэтому когда темное полушарие было направлено к Земле, спутник становился невидимым для телескопов XVII века. Именно Кассини, имея в своем распоряжении примитивные по современным меркам инструменты, был первым, кто пришел к выводу, что у Япета есть темная и светлая стороны.
Загадочный экваториальный хребет
Наблюдения космического аппарата "Кассини" выявили еще одну уникальную особенность — гигантский хребет, опоясывающий Япет точно по экватору.
Высота этого горного массива, неофициально именуемого "Стена Япета", достигает 20 километров при ширине основания до 200 километров. Протяженность этого образования составляет более 1 300 километров!
Когда-то у Япета была кольцевая система, которая в ходе гравитационных возмущений осела на экваторе;
Приливные силы Сатурна сжимали и растягивали молодой Япет, внутренности которого были еще достаточно гибкими. По мере остывания спутника растягивание становилось все менее эффективным, а после и вовсе завершилось финальным сжатием и застыванием "выдавленного" материала у экватора.
Обратите внимание: хребет покрыт многочисленными кратерами, что свидетельствует о его древнем происхождении. Вероятно, Япет обзавелся им вскоре после своего формирования.
Мы не знаем никакого другого тела в Солнечной системе, обладающего подобной структурой.
Древние кратеры-великаны
Поверхность Япета усеяна гигантскими кратерами, крупнейший из которых Абим (лат. Abisme) имеет диаметр около 800 километров. Высота краев (приподнятость краев над дном кратера) этого ударного образования превышает десять километров.
Долгое время доминировала гипотеза, что темное вещество, окутывающее одно из полушарий Япета, — это пыль и органические соединения, которые были выбиты с поверхности нерегулярного спутника Фебы микрометеоритами. Однако спектральный анализ, осуществленный "Кассини", показал несоответствие составов.
Сегодня ученые склоняются к версии, что источником вещества может быть спутник Гиперион, состав которого практически идентичен темному материалу на Япете. Эта субстанция содержит водяной лед, аммиак, углерод и оксид железа, которые под воздействием космической радиации и солнечного излучения приобрели характерный красноватый оттенок.
Толщина темного слоя составляет всего несколько метров.
Ледяные полярные шапки
На полюсах Япета зонд "Кассини" обнаружил ярко-белые области, представляющие собой результат уникального процесса перераспределения водяного льда. Под влиянием солнечного света темная поверхность нагревается до 130 Кельвинов (примерно -143 градуса Цельсия), заставляя лед сублимировать, а затем выпадать осадками на более холодных полюсах.
14 июля 2015 года произошло поистине историческое событие. Космический аппарат NASA "Новые горизонты", запущенный 19 января 2006 года, пролетел мимо системы Плутона, бегло исследовав карликовую планету и ее спутники, включая массивный Харон.
Несмотря на мимолетность свидания, зонду потребовались почти четыре года, чтобы передать на Землю данные, собранные в рамках этого события. Ученые до сих пор активно изучают их, публикуя все новые и новые исследования, которые позволяют нам ближе познакомиться с этим удивительным небесным телом и разгадать его тайны.
Вашему вниманию предлагаются пять впечатляющих фотографий, переданных "Новыми горизонтами", которые навсегда изменили наше представление о Плутоне.
Огромные ледниковые потоки
Пролетая над северной частью равнины Спутника (лат. Sputnik Planitia), зонд обнаружил удивительное явление — текучие льды. На изображении видно, как поверхностный слой экзотических льдов — замерзших азота и метана — обтекает препятствия и заполняет углубления.
Это открытие стало настоящим сюрпризом для планетологов, поскольку никто не ожидал увидеть такую геологическую активность на столь далекой от Солнца карликовой планете.
Ледяная "береговая линия"
Данное изображение демонстрирует завораживающий контраст между темными, скалистыми нагорьями Крун Макула (лат. Krun Macula) и соседними ледяными равнинами.
Граница между этими регионами создает потрясающий космический пейзаж, напоминающий земные береговые линии. Вот только на Плутоне все это представлено льдом и камнем при средней температуре около минус 230 градусов Цельсия.
Голубое небо далекого мира
Одно из самых неожиданных открытий "Новых горизонтов" — голубое небо Плутона. Слой дымки в чрезвычайно разреженной атмосфере карликовой планеты имеет удивительно знакомый сине-голубой оттенок.
Ученые считают, что по своей природе эта дымка схожа с той, что окружает Титан, крупнейший спутник Сатурна. Источником дымок в столь разных мирах, между которыми миллиарды километров, являются химические реакции с участием азота и метана под воздействием солнечного света. В результате этих процессов образуются мельчайшие частицы, похожие на сажу.
Плутонианский закат
Всего через 15 минут после максимального сближения с Плутоном космический аппарат "оглянулся" и запечатлел этот потрясающий закатный вид.
В кадр попали ледяные горы высотой до 3 500 метров и плоские равнины, простирающиеся до горизонта. Естественная "подсветка" со стороны Солнца позволяет идентифицировать отдельные слои дымки, указывающие на сложную природу даже столь скудной атмосферы.
Динамичный дуэт: Плутон и Харон
Это составное изображение показывает Плутон и его крупнейший спутник Харон в улучшенных цветах (искусственно усиленная цветопередача для выделения различий в составе поверхности).
Прекрасно видно поразительное сходство между красно-коричневым северным полюсом Харона и экваториальными ландшафтами самого Плутона, что дает ученым подсказки о происхождении и эволюции этих объектов.
Предполагается, что система Плутон-Харон сформировалась в результате гигантского столкновения — сценария, очень похожего на образование нашей Луны. Миллиарды лет назад массивное тело врезалось в протоплутон, выбросив в космос огромное количество материала, из которого впоследствии сформировался Харон. Эта модель способна объяснить схожий состав небесных тел, аномально большой размер спутника (Харон составляет около половины диаметра Плутона — уникальное соотношение в Солнечной системе) и специфические орбитальные характеристики системы (Плутон и Харон повернуты друг к другу одной стороной).
Миссия "Новые горизонты" показала, что даже столь далекие миры являются динамичными и таят множество загадок. Раскрыть их тайны помогут будущие целевые миссии — специально разработанные космические аппараты для долгосрочного изучения.
Экзопланета TOI-2431 b, расположенная в 117 световых годах от Земли, побила все рекорды скорости вращения вокруг своей звезды. За время одного земного года эта экстремальная планета размером с Землю успевает совершить почти 1 600 оборотов!
Такая невероятная скорость возможна благодаря крайне близкому расположению к своему красному карлику. Один год на TOI-2431 b длится всего 5,5 земных часов. Представьте: вы просыпаетесь утром на этой планете, а к обеду уже наступает Новый год!
Из-за экстремально сильного влияния приливных сил со стороны родительской звезды планета имеет искаженную, вытянутую форму.
Stuck In The Sound - французская инди-рок группа, созданная в Париже в 2001 году.
Все четверо участников группы любили группу Нирвана и её солиста Курта Кобейна. Название "Stuck in the Sound" появилось из-за того, что, когда группа только образовалась, они заперлись в подвале и занимались музыкой, так что они буквально "застряли в звуке".
В 2012 году они записали песню "Let's Go', а мультипликаторы Алексис Бомон и Реми Горден сняли клип с сюжетом об целеустремлённом китайском мальчике, облетевшем и Землю, и Луну.
История о том, как непредвиденные обстоятельства могут внезапно обрушить сбывшуюся детскую мечту и свести к нулю потраченные на это усилия.
Чтобы ответить на этот вопрос, нам придется вернуться назад во времени, в 1916 год, когда Альберт Эйнштейн, один из величайших умов в истории, опубликовал свою общую теорию относительности.
До 1916 года физики, пытаясь объяснить, что такое гравитация и почему она существует, выдвигали бесчисленное множество всевозможных гипотез. Ни одна из них не устраивала Эйнштейна, и он предложил свое объяснение: гравитация — это искривление пространства-времени.
Пространственно-временной батут
Математически Эйнштейн доказал, что за гравитационные эффекты отвечает искривление пространства-времени. Батут — отличный способ продемонстрировать это сложное явление на плоской поверхности.
Представьте, что вы кладете пушечное ядро в центр батута — его масса прогибает полотно, создавая впадину. Если мы поместим у внешнего края батута теннисный мяч, то он покатится не просто внутрь, но и вокруг ядра.
Гравитация — искажение ткани пространства-времени, влияющее на движение объектов.
Именно это объясняют знаменитые математические уравнения Эйнштейна — как пространство-время ведет себя при различных физических условиях.
Мы знаем, что во Вселенной все и всегда находится в постоянном движении. И когда объекты ускоряются в пространстве-времени, они могут создавать небольшую рябь, подобно камешку, брошенному в спокойную воду пруда.
Эта рябь — то, что мы называем гравитационными волнами.
Эйнштейн, предсказывая их существование, сомневался, что когда-нибудь в распоряжении человечества появится сверхчувствительный инструмент, который сможет зафиксировать эти ничтожно малые колебания, сотрясающие при этом всю Вселенную.
Хотелось бы узнать, как бы он отреагировал на тот факт, что мы не просто подтвердили существование гравитационных волн, но и зафиксировали около 300 событий, начиная с 2015 года. Это одно из крупнейших достижений в физике, и то, как ученым удалось осуществить это, просто взрывает мозг!
Сжатие и растяжение
Когда гравитационная волна проходит через Землю, она слегка сжимает или растягивает всю планету в направлении своего движения. Измерить такой эффект с помощью обычной линейки невозможно — ведь сама линейка тоже растянется или сожмется вместе с пространством, и показания останутся неизменными.
Поэтому для этих целей физики решили использовать свет, который за определенное время может пройти определенное расстояние. Если пространство растянуто, то свету придется пройти большее расстояние, потратив на это больше времени. И наоборот, если пространство сжато.
Чтобы узнать, сжалось или растянулось пространство, нужно измерить его в двух направлениях и вычислить разницу. Звучит просто, но осуществить подобное на практике — сложнейшая задача. Все дело в том, что искомая разница в расстоянии в 1 000 раз меньше крошечной частицы, именуемой протоном. Для понимания масштаба: в наших телах содержится около 10 октиллионов протонов (единица с 28 нулями). А детекторы должны уловить изменения, которые в тысячу раз меньше одной такой частицы.
Как уловить невозможное?
Для решения этой задачи ученые создали невероятно сложные устройства — лазерные интерферометры. Принцип их работы основан на измерении расстояния между специальными тестовыми массами с помощью лазерных лучей.
Тестовые массы устанавливаются на огромном расстоянии друг от друга — это позволяет сделать даже мельчайшие изменения достаточно заметными для измерения. Эти массы тщательно изолируются от всех возможных помех, кроме одной — гравитации, от которой защититься невозможно.
Лазеры непрерывно измеряют точное расстояние между массами. Когда проходит гравитационная волна, пространство-время слегка растягивается или сжимается, и время, необходимое свету для преодоления расстояния между массами, изменяется. Эти крошечные изменения и улавливают детекторы.
Первый улов
14 сентября 2015 года произошло событие, навсегда изменившее науку. Детекторы LIGO в США впервые зарегистрировали гравитационные волны от слияния двух черных дыр, произошедшего на расстоянии около 1,3 миллиарда световых лет от нас.
В 2017 году к охоте присоединился европейский детектор Virgo в Италии, а в 2020 году — японский детектор KAGRA. На начало 2030-х годов намечен запуск космического детектора гравитационных волн LISA в рамках программы Европейского космического агентства.
Что нам рассказывают волны?
Гравитационные волны подарили нам совершенно новый способ изучения Вселенной. Они помогают понять фундаментальные законы физики и рассказывают о самых грандиозных событиях космоса, которые невозможно наблюдать напрямую: формировании галактик, росте и слиянии сверхмассивных черных дыр, рождении и смерти звезд.
Ученые убеждены, что будущие детекторы позволят нам "заглянуть" в первые мгновения после Большого взрыва и приблизиться к пониманию того, как зарождалась наша Вселенная. Каждая новая зафиксированная гравитационная волна — это послание не только из глубин Вселенной, но и из невообразимо далекого прошлого.
В 2001 году писатель, футуролог и популяризатор науки Артур Кларк совершил "открытие", которое, как он думал, способно стать поворотным в истории человечества.
Скачав из интернета свежие снимки Марса, переданные орбитальным аппаратом NASA Mars Global Surveyor (MGS), 84-летний автор "Космической одиссеи" внимательно изучил их и пришел к неожиданному умозаключению: "На Марсе однозначно есть жизнь!"
Кларк был настолько взволнован, что поспешил организовать прием для друзей и журналистов. С горящими глазами он демонстрировал гостям черно-белые снимки марсианской поверхности, указывая на загадочные древовидные структуры, которые, по его словам, двигались и постоянно менялись в зависимости от сезона.
"Это растительность!" — уверял писатель, показывая фотографии за разные периоды.
А ведь темные ветвящиеся узоры действительно периодически меняли свой размер, словно марсианский лес, который засыпал зимой и распускался в весенне-летний период.
Обычно научно сообщество игнорирует подобные "открытия", но из-за глубокого уважения к Кларку комментарий все же был дан.
Итак, на самом деле великий фантаст наблюдал совершенно обычное для Красной планеты явление — сползание песчаных дюн. Темные "ветви" оказались следами, которые оставляли скатывающиеся по склонам небольшие валуны и песок, приводимые в движение в процессе сублимации* замороженного углекислого газа (сухого льда).
*Сублимация — переход вещества из твердого состояния сразу в газообразное.
С приходом марсианской весны поверхность прогревается, сухой лед испаряется и частицы грунта начинают движение. Массовое осыпание формирует характерные древовидные узоры — результат банальной эрозии, а не жизнедеятельности инопланетной флоры.
К концу жизни Кларк признал свою ошибку, но его "марсианские деревья" стали ярким примером того, что даже гениальный ум не застрахован от причуды мозга выдавать желаемое за действительное.
Мораль сей истории такова: зачастую самые захватывающие объяснения оказываются неверными.
На изображении отчетливо виден крупный валун на гребне песчаных дюн, переход между двумя различными геологическими структурами и удаленные возвышенности, находящиеся на расстоянии до 65 км.
Панорама Марса с улучшенной цветовой палитрой. (Источник: NASA/JPL-Caltech/ASU/MSSS)
Команда
NASA Perseverance использовала редкую возможность ясного неба
над поверхностью Марса, чтобы создать одно из наиболее детализированных
панорамных изображений за весь период миссии. Панорама собрана из 96
отдельных кадров, снятых в области, обозначенной научной группой как
«Фалбрин», пишетPhys.org.
Камера
Mastcam-Z марсохода Perseverance выполнила съемку 26 мая 2025 года,
на 1516-м соле своей миссии, стартовавшей в феврале 2021 года
внутри кратера Джезеро. Ровер достиг вершины этого кратера в конце
прошлого года. Версия панорамы с усиленными цветами демонстрирует
удивительное зрелище чистого голубого неба, хотя в действительности Марс
обладает характерным красноватым оттенком атмосферы.
Одной
из любопытных деталей, отмеченных учеными, стал крупный камень.
Он расположен на темной песчаной волне формы полумесяца справа от центра
мозаики, примерно в 4,4 м от марсохода. Геологи называют такие объекты
«плавающими камнями»: вероятно, они возникли в одном месте
и впоследствии оказались в другом. Причина перемещения остается
неизвестной — возможно, ее вызвали оползень, вода или ветер.
Панорама Марса в естественных цветах. (Источник: NASA/JPL-Caltech/ASU/MSSS)
Яркий
белый круг чуть левее центра вблизи нижнего края изображения — след
абразивного износа. Это 43-й камень, который Perseverance обработал
с момента посадки на Марс. Небольшой участок диаметром около 5 см
выполнен буровым устройством марсохода специально для изучения структуры
камня под верхним слоящимся пыльным покрытием, чтобы определить
целесообразность дальнейшего забора образцов породы в специальные
титановые пробирки миссии.
Справа
на краю панорамы отчетливо видны следы движения марсохода.
Приблизительно на дистанции 90 м они меняют направление влево, скрываясь
за пределами видимости на участке предыдущей геологической стоянки,
известной среди ученых как «Кенмор».
Почти
посередине картины, протянувшись горизонтально от одного края
к другому, проходит четкая линия перехода между светлыми и темными
породами. Здесь фиксируется граница («контакт») двух различных
геологических слоев. Более плоские и светлые участки, расположенные
ближе к марсоходу, характеризуются высоким содержанием минерала оливина,
тогда как дальние темные слои предположительно состоят из древних
глиноподобных минералов.
Одной из наиболее сильных сторон космического телескопа NASA "Джеймс Уэбб" является его способность "заглядывать" внутрь областей звездообразования, которые окутаны чрезвычайно плотными газовыми облаками, делающими их недоступными для наблюдений в обычные оптические телескопы.
Ярким примером исследования колыбели звезд является изображение области NGC 346, представляющей собой очень яркий и крупный регион активного звездообразования в Малом Магеллановом Облаке (ММО).
Галактика-соседка с сюрпризами
ММО — карликовая галактика-спутник Млечного Пути, находящаяся на расстоянии около 210 000 световых лет от нас. Эту галактику, расположенную в направлении созвездия Тукана, можно лицезреть невооруженным глазом из Южного полушария Земли и вблизи экватора, но с территории России ее, к сожалению, увидеть не получится.
Ключевая особенность этой галактики — низкое содержание тяжелых элементов по сравнению с Млечным Путем. Дело в том, что все элементы тяжелее водорода и гелия "выпекаются" в ядрах массивных звезд. Когда такие звезды завершают свой жизненный цикл и вспыхивают как сверхновые, они обогащают окружающее пространство новыми химическими элементами.
Космическая пыль состоит преимущественно из тяжелых элементов — кремния, кислорода и других, — поэтому ученые ожидали, что в ММО ее должен быть дефицит. Однако наблюдения "Джеймса Уэбб" показали иную картину.
В регионе NGC 346 сосредоточено огромное количество космической пыли, а значит в прошлом там происходили многочисленные вспышки сверхновых, которые не только локально насытили карликовую галактику тяжелыми элементами, но и дали толчок следующей волне звездообразования.
Кирпичики жизни в космосе
Еще более интригующей находкой стало обнаружение большого количества полициклических ароматических углеводородов (ПАУ) — сложных органических молекул, которые ученые часто называют "кирпичиками жизни". ПАУ играют важную роль в формировании более сложных органических структур и могут служить основой для зарождения жизни.
Яркие шестиконечные точки на изображении представляют собой протозвезды — светила на ранней стадии эволюции, все еще окутанные плотными газопылевыми оболочками. Согласно оценке астрономов, всего в этом регионе скрываются более 1 000 звездных объектов, большинство из которых протозвезды, продолжающие активно формироваться.
Открытие показывает, что карликовые галактики представляют собой динамично развивающиеся системы. По мере накопления тяжелых элементов и формирования новых поколений звезд они эволюционируют, постепенно становясь все более сложными структурами.
Возможно, именно из подобных карликовых галактик в далеком будущем могут "вырасти" массивные звездные системы, подобные нашему Млечному Пути. Правда, это может произойти только в том случае, если карликовая галактика будет изолирована, а не поглощена более крупной галактикой-соседкой.
Цветное изображение Венеры, полученное 5 июля 2007 года космическим аппаратом NASA MESSENGER, который был запущен 3 августа 2004 года для изучения Меркурия.
Поскольку Венера находится между орбитами Земли и Солнца, мы всегда видим ее на небе на относительно небольшом расстоянии от светила. Когда Венера находится по одну сторону от Солнца, то планета как бы следует за ним и становится более заметной во время заката на Земле. Однако каждые 584 дня Венера появляется по другую сторону от Солнца, и когда это происходит, то планета восходит утром до рассвета.
Древние греки и египтяне не знали этих астрономических деталей, поэтому они рассматривали Венеру как два разных небесных тела — утреннее и вечернее. Венеру, появляющуюся до восхода Солнца, греки называли Фосфором (др.-греч. Φωσφόρος — "несущий свет"), а Венеру, красующуюся на небосводе после захода Солнца, они называли Геспером (др.-греч. Ἕσπερος — "вечерний, западный").
Примечательно, что древние римляне знали, что перед ними один объект, но, переняв многое из греческой культуры, они не упустили возможность позаимствовать и отдельные определения для утренней и вечерней Венеры: Люцифер (лат. Lucifer — "светоносный") и Веспер (лат. Vesper — "вечерний") соответственно.
17 мая 1882 года астрономы стали свидетелями невероятного космического совпадения — во время полного солнечного затмения рядом с нашим светилом пролетала яркая комета семейства Крейца.
Комета X/1882 K1, позже получившая неофициальное название "Комета затмения", подошла к Солнцу на рекордно близкое расстояние — всего 450 000 километров от поверхности. Для сравнения: среднее расстояние от Земли до Луны составляет 384 400 километров. В ходе такого маневра ядро X/1882 K1 раскалилось до нескольких тысяч градусов.
Хвост "Кометы затмения" растянулся более чем на 100 миллионов километров — это две трети расстояния от Земли до Солнца! Комета стала настолько яркой, что ее можно было наблюдать невооруженным глазом даже днем.
Гигантские хвосты комет формируются под действием солнечного ветра и излучения. Когда комета приближается к Солнцу, ее ядро — смесь льда, пыли и камней (поэтому кометы нередко называют "грязными снежками") — начинает нагреваться. Лед сублимирует — сразу превращается в газ, минуя жидкую фазу. Солнечный ветер и световое давление уносят частицы газа и пыли прочь от Солнца, формируя характерный хвост, который всегда направлен в противоположную от звезды сторону.
Кометы семейства Крейца — особая группа комет, образовавшихся в результате разрушения гигантской кометы около тысячи лет назад. Названы в честь немецкого астронома Генриха Крейца, который установил связь между этими небесными телами, выдвинув теорию их общего происхождения. Все кометы семейства Крейца имеют схожие орбиты с периодом от 500 до 900 лет и регулярно "ныряют" к Солнцу на экстремально близкие расстояния.
На сегодняшний день известно более 2 000 комет семейства Крейца, большинство из которых было обнаружено космическим аппаратом NASA/ESA SOHO. Примечательно, что многие из этих комет настолько малы, что полностью испаряются при приближении к Солнцу.
Прародительница всех комет Крейца, вероятно, была одной из крупнейших комет Солнечной системы — ее ядро достигало десятков километров в диаметре. При распаде она породила целую "династию" комет, которые до сих пор напоминают нам об этом древнем космическом катаклизме.
В созвездии Цефея, на расстоянии около 550 световых лет от Земли, находится один из самых завораживающих объектов Млечного Пути — туманность Призрак (IC 63). Этот космический гигант медленно "тает" под воздействием мощного излучения близлежащей звезды, словно утренний туман, встречающий лучи восходящего Солнца.
Первое, что поражает в туманности Призрак — это ее удивительное сходство с мифическим фениксом. Золотисто-синие газовые облака образуют силуэт гигантской птицы с широко расправленными крыльями, застывшей в безмолвном полете через тьму Вселенной. Не менее впечатляющей особенностью этого космического создания является его колоссальный размер — около семи световых лет в поперечнике, что почти в 443 000 раз превышает расстояние от Земли до Солнца.
Призрачное свечение туманности обеспечивает звезда Гамма Кассиопеи, которая представляет собой чрезвычайно яркий бело-голубой гигант, удаленный примерно на три световых года от IC 63. Это светило в 19 раз массивнее и в 65 000 раз ярче Солнца!
Мощное ультрафиолетовое излучение звезды ионизирует атомы водорода в туманности, вынуждая их светиться красноватым цветом, в то время как частицы космической пыли рассеивают голубой свет. Вкупе это создает неповторимую цветовую палитру, наблюдаемую на изображении, которое было получено с помощью космического телескопа NASA/ESA "Хаббл".
Однако интенсивное излучение со стороны Гаммы Кассиопеи не только освещает газово-пылевое облако, но и буквально испаряет его, унося частицы материи в межзвездное пространство. Астрономы подсчитали, что если темп выдувания сохранится, что через несколько десятков тысяч лет — мгновение по космическим меркам — от туманности Призрак ничего не останется.
Туманность IC 63 — напоминание о мимолетности даже самых грандиозных космических явлений. Этот небесный призрак существует лишь благодаря хрупкому балансу между гравитацией, удерживающей газ и пыль вместе, и звездным ветром, стремящимся их рассеять. Каждый фотон, покидающий Гамму Кассиопеи и врезающийся в туманность Призрак, приближает момент, когда последние частицы IC 63 разлетятся по холодной пустоте межзвездного пространства.
Завораживающая фотография лунного кратера Аристарх, расположенного в северо-западной части видимой стороны спутника. Средний диаметр данного ударного образования составляет 40 километров, а наибольшая глубина — 3,15 километра. Центральный пик кратера возвышается на 300 метров.
Кратер был назван в честь Аристарха Самосского (~310 год до н. э. — ~230 год до н. э.), древнегреческого астронома, математика, философа и создателя гелиоцентрической системы мира.
Изображение, прикрепленное к посту, было получено 4 августа 2018 года действующим орбитальным аппаратом NASA Lunar Reconnaissance Orbiter (LRO).